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Abstract. Elastic constants have been calculated for Lhe FOC metals Cu, AI and Ni using 
the Mijbius transform and a short-range three-body potential correction Unlike a previous 
calculation based only on pair potentials, the present result is in good agreement with expriment 
since the restriction of b e  Cauchy relation has been removed. More importantly. it shows the 
potential application of the Mtjbius-inversion method for evaluating interatomic potentials €mm 
ab initio elecbmic s r ” r e  calculations. 

1. Introduction 

Recently, the obscure Mobius inversion formula in number theory has been applied to 
different kinds of inverse problems in physics [l-121. In particular, the Mtibius formula for 
lattice problems can be used to obtain pair potentials for FCC and BCC metals from cohesive 
energy calculations [7,1 I]. The inversion is exact for radial pair potentials with much faster 
convergence than the earlier reported method of Carlsson and co-workers [13]. In this 
paper, the M6bius-inverted pair potential is used to calculate the elastic constants of FCC 
bansition metals by including the corrections for the short-range three-body interactions. 
The calculated results are in good agreement with experiment, and the Cauchy relation 
between the elastic constants has been removed completely. 

2. Formalism 

In general, the binding energy per atom might be expressed as 

where T represents the lattice constants, @(zl and @‘3’ are the two-body and &-body 
interatomic potentials respectively. ~ ; j  is the displacement vector from the ith atom to the 
j th atom; B’ represents that the zero displacement is not included. If we ignore the three- 
body interactions and all the higher-order multibody interactions, we can obtain the exact 
formal solution of pair potential from inverting the binding energy curves 16.7, I l l .  Pair 
potentials are widely used for modelling a variety of mechanical and defect properties, 
phonon dispersion, and so on. As is well known, calculations based only on pair potentials 
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leave many shortcomings, such as the Cauchy relation [14], which is due to a many-body 
effect of electronic origin. Here we consider the simplest correction, namely that of the 
three-body interaction. If the atom under consideration is at the origin, and we take a 
simplified form for the three-body interaction, then ( I )  can be expressed as 

Brunch and McGee [ 151 have proposed a Slater-Kirkwood-type non-additive three-body 
energy for dense helium: 

$'3'(Ri, Rj) = [e-u'R1+RJ+Rtf) + c(R;Rj Rij)(- ' ) ] ( I  + c O ~ S ~ c o ~ & c o ~ 6 ' ~ )  (3) 

where 81, 02 and 03 are the inner angles of triangle formed by Rj, Rj and R + j .  The 
first exponential term of this equation represents the exchange three-body interaction which 
describes the alterations of the charge densities of two interacting atoms by the presence of 
a third one at small interatomic distances. The second term, known as the Axilrod-Teller 
(AT) term, represents the hiple-dipole interaction which is the dominant contribution of the 
three-body interactions between atoms with closed shells. In the lower-density region, the 
Axilroad-Teller three-body interaction is the main part of the three-body energy and leads 
to an accurate description of dense rare gases, while the three-body exchange interaction is 
greater in magnitude than the AT term for small interatomic distances [ 18,191. 

In the present work, we take this short-range three-body potential as the three-body 
interaction in FCC metals, namely 

@ 3 1 ( ~ j ,  R,) = Ae*'R'+Rf+fijLI'(I + cose,cose2cosed (4) 

where (I is the decay constant for the three-body interaction, which is dependent on the 
particular element. In fact such an empirical expression for the short-range three-body 
interaction in a lattice was suggested by Sarkar and Sengupta [ZO]. The proposed three 
body potential leads to some satisfying calculations of the lattice dynamical properties of 
transition metals [ZI]. 

From the physical point of view, the three-body interaction is of short range [ZZ]. 
reflecting the simultaneous overlap of the electronic orbital of the three atoms under 
consideration. Obviously, it  could affect the shear modulus significantly. In the foilowing 
discussion, we limit the short-range three-body forces in the FCC system up to only 
second-nearest neighbours due to its short-range property. For first-nearest neighbours, 
the corresponding Rj and 0, are given by 

where r is the lattice constant. Inducing second-nearest neighbours, the corresponding Rj 
and 0; are given by 
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. WJ _ _ "  I -+' Figure 1. The calculation of sheared three-body energy: 
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Consequently, the contribution to the binding energy of an unsheared FCC lattice from the 
three-body potential is given by 

mnsider the (100) plane sheared along lhe (010) direction. 

(3) - %Ae-'3&/2h7(l + i) + ~ A e - ~ l t f i ) ~ 7  = 4.5Ae-'3&/2)U' + 4Ae-(ltf i j=,  -- 6 

(7) 

For evaluating the decay constant a we assume that if one of Ri, R,, Ri, is equal to the 
next-neighbor distance, then the corresponding three-body interaction becomes negligible, 
i.e. 

To evaluate the elastic constants, we will calculate the deformation energy for small strains 
about the equilibrium. If E is the strain for a stretching deformation, then the lattice constant 
r along the direction of stretching is 

r = ao(l + E )  (9a) 

where a0 is the equilibrium lattice constant For a shear deformation, as in figure 1, the 
corresponding lattice constant is 

r = a o d i T - 2  z ao(l+ c2/2) .  (9b) 

Therefore, for determining a in our calculation, we substitute the equilibrium lattice constant 
a0 into (S), and define a material independent parameter ,3 as 

,3 = cyao (10) 

such that 
n LnlO 

= 7.861 517311. 

We take n = 0.5 so that 

,3 = 3.9307587. (12) 

For each particular element, we adjust the parameter fi  (or n) around 3.9, until satisfactory 
results for elastic constants are obtained. 
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Now let us consider the pair potentials. We denote E'%) as follows: 

= - 4.5Ae-(3&/2)@" - 4Ae-<l+fibr (13) 

where E'2'(r) represents the contribution to the binding energy from the pair potentials. 
For the FCC lattice we can write EL2'(r) in the following way: 

(14) 

Here, $J2) is the pair potential, the first sum coming from the points lying'along the axes. 
The six different directions give a weight of 6/2 = 3. The first term of the second sum 
arises from the points on the cube edges lying on the coordinate planes, while the second 
expression arises from the points on this plane that lie on the face centres. Each of these 
contributions have a weight of 12/2 = 6. The first expression in the last sum arises fmm 
the points on the cube edges away from the coordinate. planes. Each carries its appropriate 
weight Equation (14) is exact 

We now use the modified Mobius inversion for the lattice [6,7] to calculate the pair 
potential from (14) with very fast convergence. We introduce an operator Q to rewrite the 
first sum, and the s = t terms in the second sum in (14), as 

The remaining part of the right-hand side of (14) can be expressed as 

(16) 

with another operator R, where E' means that the sum does not include the terms of s = t .  
Introduce an operator N such that 

m 

N f ( r )  = (-1/2)m-'(p)(n)f(2m12nr) 
m.n=I 

where p (n) is the Mobius function defined by 

i f n = I  
if n c p ( q )  
otherwise. 
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Here n c P(9) means that n is a product of 9 distinct prime numbers. Then 

If we change the dummy variable in the first expression from m to m' = m - 1 then we note 
thas except for the terms form' = 0, every other term exactly cancels with a corresponding 
term in the second expression. Thus we finally have 

m 

NGW) = w(n)@(snr) .  (20) 
".$.=I 

By using the Mobius inversion theorem [I61 which states that if 

then 

and vice versa, it immediately follows that 

N = p. 

Equation (14) becomes 

E"'(r) = (G + R)@'''(r) 

therefore 

@"l(r) = ( I  + G-lR)- lG- 'E1z ' (r )  = (1 +NR)"NE'"(r) 
= ( I  - NR + N W R  - . . .)NE"'(r) 
= (N - N W  + N W W  - . . .)E'*I(r). 

From (IS), (22) and (24) one can see that the zero-order approximation 

@"'(r) = NE'"r (25) 

has already included all the atoms in both the most close-packed and the second-most close 
packed directions. This approach is different from most treatments in solid state physics, 
which only cover nearest- and second-nearest neighbour atoms. 

The reason why the present procedure is much faster then the previous work by Carlsson 
and co-workers [I31 arise from the cancellation in this modified Mobius method [6], 
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Table 1. The calculated binding energy for Cu. v = (oo/a)' (a0 is the equilibrium lanice 
mnsml). 

d 0.5 0.7 0.9 1.0 1.5 2.0 
E< (evlatom) -254 -3.02 -3.55 -3.62 -3.60 -2.05 
a(A) 4.548 4.066 3.139 3.61 3.154 2865 

The binding energy in (2) can be obtained by performing an LMTU calculation [W]. 
Taking the calculation for copper as an example, the binding energy calculation based on 
the LMTO method proceeds in I /48 of the volume of the first Brillouin zone with 89 k-points. 
The 4s13dI0 electrons are considered as the valence electrons for the atomic configuration. 
Table I gives the binding energy calculated for various lattice constants. 

The binding energy curves for Cu, AI and Ni, which have been calculated by the above 
method. are fitted as follows. 

(i) The fitting curve of the binding energy for Cu is 

E(r) = 3.663855(1.281748 x l@e-1.988682 -71.60301e-0.9"~41') 

E(r) = 11.744916(2.205 357 x 103ee-2.77943" - 3.598352/r -0.099986) 

r 2 2.4A 
(26) 

r < 2.4A 

(27) 

(ii) The formula for AI is 

E(r) = 3.507(6.50174 x 102e-'.ML98" - 50.99702e-0.904w) (28) 

E(r) = 11.499605(5.38165 x 102e-Z.W2& -4.02345/r) r < 2.4A (29) 

(iii) The formula for Ni is 

E(r) = 4.436 1 l(8.09163 x lde-'~91zz4r - 56.891 57e-0.95612) 

E ( r )  = 9.314 16(2.52495 x 104e-3~62009r - 3.501 65/r) 

r 2 2.4A 

r 2 2.4A (30) 

(31) r < 2.4A. 

Here, the binding energy is in eV per atom, and the lattice constant is in A. 
The general shape of our binding energy for Cu is quite close to that of [13], but differs 

a little more from that of [7], especially for the repulsive pm. For the value of binding 
energy at equilibrium, our result is close to the experimental data, the result of [I31 being 
much deeper than ours. 

3. Calculated elastic constants 

If the three-body contribution is neglected (i.e. A = 0). then the corresponding pair 
potentials may be obtained directly from the Mobius inversion. They are plotted in figure 2. 
We have fitted these curves by the following analytic expressions. 

(i) For Cu 

1. (32) ,$(r) = 0.359 3792(e-2."R3021r-Z.8~7) - 2e-l.389151~r-2.5871 
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F@rc 2. The pair potentials of Cu, AI and Ni as a function of  distance beween atoms. Full 
awe: the three-body inleractions are h e .  Broken curve: consider the w m i o n  of three-body 
potential by raking A = IOd and n = 0.72 for Cu, A = 5.89 x 10' and n = 0.51 for AI, 
A = 7.94 x IO2 and n = 0.6 far Ni. 

(ii) For AI 

1. (33) 

1. (34) 

= 0,306 ~~5(e-Z.Z3801Z(,-3.323i - ~e-l.119W6(r-3.323) 

(iii) For Ni 
$(r) = 0.403 067(e-2.€43244'r-2.852) - ~-l.331622(r-2852) 

The calculated elastic constants are compared with the experimental data in table 2 (see 

ClZ = c44 (35) 

holds. This result is the same as that of any spherical pair potential model and conbary to 
experiment, especially Cu and AI. 

The three-body interaction E"' is now included so that A # 0. For copper, as an 
example, if A is taken as 104eV and n = 0.72 (see table 2), then E'3) 1 (8.76 x 10-Z)E. 
Therefore. the pair potential is changed to 

(36) 

The corresponding binding energy Ef3' under the shear shown in figure I can be expressed 

the three lines designated '2 - b only'). Obviously, the Cauchy relation 

$(,.) = 0.371 ~~5(e-2.7301104fr-2.8141 - ~e-1.365402(r-2.8141 . 1 
as 
p3yr )  = ;A  (&-wt-urra~n-vx~ + &-ur2-=r,-ah-nl 

4 + &-urj-aq-.zlr,-nl + &-ur;-ur;-ulr;-r;l 

1 + &-w;-ar;-.4I$-?-l + &-ar;-.7r;-ml<-r;l 
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Table 2. Comparison of Ur calculated and experimental elastic m”US in UN& of IO” Pa: 
8 is lhe bulk modulus. In ihii calculation with the mrreclions of Ihree-bady intemctiom, Ihc 
panunetur have been taken as follows: A = lo‘, n = 0.72 for CU; A = 5.89 x I d ,  n = 0.51 
for AI and A = 7.94 x Id. n = 0.6 for Ni. A is in eV and II is dimensionless. 

~ 

Cu Experiment [I71 1.762 1249 0.818 1527 1.420 
Carissonerol 1131 2050 1.400 - - 1.650 
Resent 2 - b only 1.775 1.262 1.270 0.994 1.432 
Resent 3 - b includ. 1.741 1278 0.802 1594 1.432 

Al Experiment [I71 1.143 0.619 0.316 1.958 0.794 
Present 2 - b only 1.051 0.678 0.668 1.015 0.803 
Resent 3 - b includ. 1.179 0.615 0.409 1504 0.803 

Ni Experiment [I71 2.612 1508 1.317 1.145 1.8’16 
Resent 2 - b only 1.9% 1.488 1.493 0.997 1.647 
Resent 3 - b  includ. 2.091 1.425 1.315 1.084 1.647 

where 

and 

6’ + -e. 

and 

where is the equilibrium lattice constant and E = tan6 is the shearing strain. Therefore, 
the corresponding results of the calculated elastic constants are shown in table 2 (see the 
three lines designated by ‘3 - h includ.’). By using the three-body interaction correction, 
the results are in excellent agreement with experimental data, Also, the Cauchy relation has 
been violated, as the experiment requires. 

4. Discussion and conclusion 

The pair and three-body potentials of FCC Cu, AI and Ni have been applied to calculate 
the elastic constants without the restriction of the Cauchy relation. In this calculation, the 
parameters of A and a are both adjustable; the corresponding calculated results of elastic 
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constants are listed in table 3. Within this chosen range of A and U, the results are not 
particularly sensitive to the input parameters. The three-body interaction can account for 
the Cauchy experimental discrepancies. For the parameters A and n shown in table 2, 
which lead to acceptable predicted values, the ratio of E"'/E" is 8.76 x IO-', 2.7 x lo-' 
and 4.41 x IO-* for Cu, AI and Ni respectively, so that the painvise energy contributes 
to the main part of the total energy. If the ratio E'3'/E'0' is larger than a threshold value 
RE, (Re Y 3 x IO-'), then the FCC sttucmre would be unstable to stretching or shearing. 
This restricts the choice of parameters. 

Table 3. Some RIUIS of calculared elastic wll~tants as we adjust ule parameters A and n. 

A(1O'ev) n CII ct2 cu CldC44 
c u  5.01 0.65 1.856 1.220 0.681 1.775 

IO 0.7 1.790 1.253 0.688 1.821 
IO 0.73 1.714 1.291 0.846 1526 
IO 0.75 1.741 1.278 0.961 1.330 
10 0.8 1.714 1.291 1.069 1.208 
63.1 0.9 1.654 1.321 1.010 1.308 
31.6 1 1.714 1291 1.146 1.127 

AI 0.589 0.49 1.292 0559 0.312 1.920 
0.569 0.495 1.246 0.582 0.359 1.621 
0.501 0.5 1.191 0.609 0.437 1.394 
0.575 0.5 1.246 0582 0.363 1.603 
0.562 0.51 1.179 0.615 0.425 1.447 
0562 0.52 1.144 0.632 0.437 1.446 
0562 0.54 1.113 0.64 0.539 1.202 

Ni 0.1 0.44 2209 1.366 1.268 1.077 
0.1 0.445 2.186 1.378 1.315 1.048 
0.1 0.45 2.186 1.378 1.345 1.024 
0.1 05 2.115 1.413 1.416 1274 
1 0.6 2.132 1.405 1.350 1.041 
0.316 0.6 2.215 1.363 1.143 1.192 

A similar approach has also been applied to calculating the phonon dispersion relations 
for FCC transition metals [12]. The calculated results an in excellent agreement with the 
experimenr improving markedly the pair potential predictions. Based on the calculated pair 
and three-body potentials, the phonon spectra for materials with strain can be evaluated 
directly. From the above, the potential applications of Mobius method would be very 
amactive for evaluating the properties of materials. 
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